A Unique 3D Nitrogen-Doped Carbon Composite as High-Performance Oxygen Reduction Catalyst

نویسندگان

  • Ramesh Karunagaran
  • Tran Thanh Tung
  • Cameron Shearer
  • Diana Tran
  • Campbell Coghlan
  • Christian Doonan
  • Dusan Losic
چکیده

The synthesis and properties of an oxygen reduction catalyst based on a unique 3-dimensional (3D) nitrogen doped (N-doped) carbon composite are described. The composite material is synthesised via a two-step hydrothermal and pyrolysis method using bio-source low-cost materials of galactose and melamine. Firstly, the use of iron salts and galactose to hydrothermally produceiron oxide (Fe₂O₃) magnetic nanoparticle clusters embedded carbon spheres. Secondly, magnetic nanoparticles diffused out of the carbon sphere when pyrolysed in the presence of melamine as nitrogen precursor. Interestingly, many of these nanoparticles, as catalyst-grown carbon nanotubes (CNTs), resulted in the formation of N-doped CNTs and N-doped carbon spheres under the decomposition of carbon and a nitrogen environment. The composite material consists of integrated N-doped carbon microspheres and CNTs show high ORR activity through a predominantly four-electron pathway.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preparation of Nitrogen-Doped Graphene By Solvothermal Process as Supporting Material for Fuel Cell Catalysts

Development of efficient electrocatalysts for oxygen reduction reaction (ORR) is one of the most important issues for optimizing the performance of fuel cells and metal-air batteries. The introduction of nitrogen into carbon nanostructures has created new pathways for the development of non-precious electrocatalysts in fuel cells. In this work, nitrogen-doped graphene (NG) was synthesized by a ...

متن کامل

Shrimp-shell derived carbon nanodots as carbon and nitrogen sources to fabricate three-dimensional N-doped porous carbon electrocatalysts for the oxygen reduction reaction.

Development of cheap, abundant and metal-free N-doped carbon materials as high efficiency oxygen reduction electrocatalysts is crucial for their practical applications in future fuel cell devices. Here, three-dimensional (3D) N-doped porous carbon (NPC) materials have been successfully developed by a simple template-assisted (e.g., SiO2 spheres) high temperature pyrolysis approach using shrimp-...

متن کامل

Active and stable carbon nanotube/nanoparticle composite electrocatalyst for oxygen reduction

Nanostructured carbon-based materials, such as nitrogen-doped carbon nanotube arrays, Co3O4/nitrogen-doped graphene hybrids and carbon nanotube-graphene complexes have shown respectable oxygen reduction reaction activity in alkaline media. Although certainly promising, the performance of these materials does not yet warrant implementation in the energy conversion/storage devices utilizing basic...

متن کامل

Synthesis of an efficient heteroatom-doped carbon electro-catalyst for oxygen reduction reaction by pyrolysis of protein-rich pulse flour cooked with SiO2 nanoparticles.

Development of a highly durable, fuel-tolerant, metal-free electro-catalyst for oxygen reduction reaction (ORR) is essential for robust and cost-effective Anion Exchange Membrane Fuel Cells (AEMFCs). Herein, we report the development of a nitrogen-doped (N-doped) hierarchically porous carbon-based efficient ORR electrocatalyst from protein-rich pulses. The process involves 3D silica nanoparticl...

متن کامل

Nitrogen-doped graphene-rich catalysts derived from heteroatom polymers for oxygen reduction in nonaqueous lithium-O2 battery cathodes.

In this work, we present a synthesis approach for nitrogen-doped graphene-sheet-like nanostructures via the graphitization of a heteroatom polymer, in particular, polyaniline, under the catalysis of a cobalt species using multiwalled carbon nanotubes (MWNTs) as a supporting template. The graphene-rich composite catalysts (Co-N-MWNTs) exhibit substantially improved activity for oxygen reduction ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2017